Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction and Tips</td>
<td>3</td>
</tr>
<tr>
<td>4th Grade Vocabulary By Domain</td>
<td>4</td>
</tr>
<tr>
<td>Word Wall Printable Posters</td>
<td>5 - 35</td>
</tr>
<tr>
<td>Domain Headings</td>
<td>34 - 54</td>
</tr>
<tr>
<td>Vocabulary Flip Booklet “Flipper” Instructions</td>
<td>55</td>
</tr>
<tr>
<td>Vocabulary Flip Booklets Tips</td>
<td>56</td>
</tr>
<tr>
<td>“Flipper” Flip Booklet Topics</td>
<td></td>
</tr>
<tr>
<td>Operations and Algebraic Thinking</td>
<td>57 - 58</td>
</tr>
<tr>
<td>Prime, Composite, Factors, and Multiples</td>
<td>59 - 60</td>
</tr>
<tr>
<td>Multiplication</td>
<td>61 - 62</td>
</tr>
<tr>
<td>Place Value</td>
<td>63 - 64</td>
</tr>
<tr>
<td>Standard, Expanded, and Written Forms of Numbers</td>
<td>65 - 66</td>
</tr>
<tr>
<td>Fractions</td>
<td>67 - 68</td>
</tr>
<tr>
<td>Benchmark Fractions</td>
<td>69 - 70</td>
</tr>
<tr>
<td>Decimals</td>
<td>71 - 72</td>
</tr>
<tr>
<td>Measurement Conversions</td>
<td>73 - 74</td>
</tr>
<tr>
<td>Area</td>
<td>75 - 76</td>
</tr>
<tr>
<td>Measurement</td>
<td>77 - 78</td>
</tr>
<tr>
<td>Angles</td>
<td>79 - 80</td>
</tr>
<tr>
<td>Lines</td>
<td>81 - 82</td>
</tr>
<tr>
<td>Flash Cards</td>
<td>83 - 97</td>
</tr>
<tr>
<td>Blank Flash Card and Flipper Templates</td>
<td>98 - 100</td>
</tr>
<tr>
<td>BONUS Math Toolkit Labels</td>
<td>101</td>
</tr>
<tr>
<td>About the Author</td>
<td>102</td>
</tr>
</tbody>
</table>

* If you like this product check out my store at http://www.teacherspayteachers.com/Store/Math-Mojo

* This publication was created and is copyrighted by Alexis Sergi. All rights reserved. This product is bound by copyright laws. Redistributing, editing, selling, or posting this items (or any part thereof) is strictly prohibited. This also includes distributing this product on the Internet which is strictly prohibited without first gaining permission from the author. Violations are subject to the penalties of the Digital Millennium Copyright Act. Please contact the author if you wish to be granted permission.
* The cover font and the alphabet for the domain labels was purchased at www.letteringdelight.com
Introduction
Mastering vocabulary is essential to success in math. This resource gives you the tools you need to help your students master vocabulary.

Key Features

Printable Word Wall and Domain Headings
Print the vocabulary cards and the domain headings and you have a complete math word wall! All the cards are labeled by the domain and the vocabulary words are also color coded so you can easily sort the word wall by domain.
If you don’t have space to post all the words at once, you can post the words for the unit you are working on or the words that go with the lesson you are teaching.

Vocabulary “Flipper” Flip Booklets
These vocabulary flip booklets, “flippers” are easy to make. These are self-checking, simple to make booklets students can use to learn and study vocabulary. There are 13 booklets in all and they each cover a major topic in one of the domains.
They can be sent home, used as study aides, or kept in a “math toolkit” so students can refer to them.

Vocabulary Flash Cards or Math Toolkit Notebook
Flash cards are a great tool to study vocabulary. You can print sets for students, for remediation groups, or for parents to use at home.
These cards can also be printed regular paper and hole punched to become a students own “Math Toolkit” notebook.

Tips for Making the Most of the Resources
* Refer to the words often when they are posted in the classroom
* When students ask you the meaning of a word, challenge them to find it on the math word wall or in a flip booklet
* Provide students with copies of the flip booklets to take home as a resource
* Have students store the flip booklets in a folder so they can refer to them as they need to
* Pre-teach the words to struggling students and struggling readers and give them flip booklets to use as a resource
* Give the flip booklet out at the beginning of a math unit and have students use them as reference material
* Punch a hole in the corner of the flash cards and put a binder ring through the hole, allow students to study them at a math center
Vocabulary By Domain and Colors for the Word Wall

Operations and Algebraic Thinking (Words are in Orange)
Composite Number Operation
Equation Prime Number
Expression Quantity
Factor Pair Reasonableness
Multiple Shape Pattern
Number Pattern

Number and Operations in Base Ten (Words are in Red)
Array Place Value
Compare Product
Estimate Quotient
Multi-digit Remainder
Multiplication Round

Number and Operations - Fractions (Words are in Purple)
Benchmark Fraction Equivalent Fraction
Common Denominator Fraction
Decimal Numerator
Denominator

Measurement and Data (Words are in Green)
Area Mass
Data Set Metric
Elapsed Time Perimeter
Formula Standard
Length Volume
Line Plot Width

Geometry (Words are in Blue)
Acute Angle Perpendicular
Angle Point
End Point Protractor
Line Ray
Line Segment Right Angle
Line of Symmetry Right Triangle
Obtuse Angle Two-Dimensional Shape
Parallel Lines
Acute Angle
An angle that measures greater than 0° and less than 90°.

Angle
A figure formed by two line segments or rays that share the same endpoint.
Area

The number of square units needed to cover a flat surface.

Area = 9 square units

Array

An arrangement of objects in rows and columns.

4 x 3
Benchmark Fraction

Fractions that are used to help understand the relative size of other fractions.

Common Benchmark fractions are 0, 1/4, 1/2, 3/4, and 1.

Common Denominators

A common multiple of 2 or more denominators.

\[\frac{1}{2} \text{ and } \frac{2}{3} \]

Common Denominator = 6
Compare

To describe whether numbers are less than, greater than, or equal to one another.

Example 257 > 223

Composite Number

A whole number greater than 1 that can be divided by more than two factors.

Example 6 - Can be divided by 1, 2, 3, and 6
Data Set
A group of collected information.

Decimal
A number with one or more numbers to the right of the decimal point (tenths, hundredths, etc.).
Example 0.482
Denominator
The number below the bar in a fraction, it tells the number of equal parts in all. \(\frac{1}{4} \) → denominator

Elapsed Time
The time that passes from the start of an activity to the end.
Endpoint
A point at the end of a ray or line segment.

Equation
A number sentence with an equal sign (it shows two quantities are equal).

Example \[9 \times a = 36 \]
Equivalent Decimal

Two or more decimals that name the same amount.

Example $0.5 = 0.50$

Equivalent Fraction

Two or more fractions that name the same amount.

Example

\[
\frac{1}{2} = \frac{2}{4}
\]
Estimate
An answer that is close to the exact answer.

Expression
A part of a number sentence that has numbers and operations sign, but no equal sign.

Example 4 + a
Factor Pairs

Two numbers that, when multiplied, equal a certain number.

Example
Factor Pairs of 16 - 1 x 16, 2 x 8, 4 x 4

Formula

A set of symbols that express a mathematic rule.

Example
Area = length x width A = l x w
Fraction

A number that names part of a whole or part of a group.

Length

The measurement of distance between two endpoints.
Line
A straight path of points in a plane that continues without end in both directions with no endpoints.

Line of Symmetry
An imaginary line on a shape about which the shape can be folded so that its two parts match exactly.
Line Segment

A part of a line that includes two points called endpoints and all the points between them.

A C B

Line Plot

A graph that uses marks (often Xs) above a number line to show data.

x x x x x x x

1 2 3 4
Mass

The amount of matter in an object.

Multi-Digit Number

A number greater than 9 that has more than 1 digit.

Example

2,787,219
Multiple
The product of a number and any whole number.

Example
Multiples of 8 - 8, 16, 24, 32, 40, 48

Multiplication
A process of combining equal groups to find out how many are in all.

4x3 = 12
Number Pattern
An ordered set of numbers, the order helps you predict what will come next.

Example 2, 4, 6, 8, 10

Numerator
The number above the bar in a fraction, it tells how many parts of a group.

1
4

numerator

Number and Operations - Fractions
Obtuse Angle
An angle that measures greater than 90˚ and less than 180˚.

Operation
A mathematical calculation, the four basic operations are addition, subtraction, multiplication and division.
Parallel Lines

Two lines that are always the same distance apart from each other and never meet.

Perimeter

The distance around a shape.

5 cm

3 cm

P = 5 + 5 + 3 + 3 = 16 cm
Perpendicular Lines
Lines that meet or cross each other to form a right angle.

Place Value
The value of a digit in a number, based on the location of the digit.

Geometry

Number and Operations in Base Ten
Point
An exact location.

Prime Number
A number that has exactly two factors, 1 and itself.
Product
The answer to a multiplication problem.

Protractor
A tool used to measure angles.
Quantity
A specific amount or measure.

Quotient
The answer in a division problem.
Ray
A line with one endpoint that goes on forever in one direction.

Reasonableness
An answer that makes sense based on the problem that is being solved.
Remainder
The amount left over when a number can’t be divided equally.

Right Angle
An angle that measures exactly 90°.
Right Triangle
A triangle with one right angle.

Round
To find the nearest value of a number based on a given place value.
Shape Pattern

An ordered set of shapes, the order helps you predict what will come next.

Operations and Algebraic Thinking

Two-Dimensional Figures

A figure with length and width; a figure on a plane or flat surface.

Examples

Geometry
Volume
The amount of space inside a 3 dimensional object.

Width
The measure of distance from side to side in a shape. How wide something is.
Standard Measurement

Length
- 12 inches = 1 foot
- 3 feet = 1 yard

Weight
- 16 ounces = 1 pound

Volume
- 2 cups = 1 pint
- 2 pints = 1 quart
- 4 quarts = 1 gallon

Measurement and Data
Metric Measurement

Length
- 10 millimeters = 1 cm
- 100 centimeters = 1 meter
- 1,000 meters = 1 kilometer

Mass
- 1,000 grams = 1 kilogram

Volume
- 1,000 milliliters = 1 liter
Operations and Algebraic Thinking
Operations and Algebraic Thinking
Operations and Algebraic Thinking
Number and Operations in Base Ten
Number and Operations

Fractions
Number and Operations

Fractions
Number and Operations
Fractions
Number and Operations Fractions
Number and Operations Fractions
Measurement and Data
Measurement and Data
Measurement and Data
Measurement and Data
Geometry
Geometry
Geometry
Geometry
How to Make Math Vocabulary Flippers

Mastering math vocabulary is one of the keys to understanding the “language” of math, solving word problems, and success on standardized tests that require a high level of knowledge of math vocabulary. This collection of vocabulary flippers is a great resource for students and families, as well as being an great study aid. Best of all they are easy to make, require no special equipment, and students love them!

Directions for Making the Flippers
1. Copy the page with the vocabulary words on the front and the page with the definitions on the back of a paper.

2. Fold on the fold lines in the center of the page.

 Fold Line DO NOT CUT!!!

3. Cut the solid lines between vocabulary words. Stop cutting when you get to the fold line.

4. Lift the flaps with the vocabulary words and reveal the meaning of the vocabulary words!
Ideas for Using the Math Vocabulary Flippers

These math vocabulary flippers are a powerful tool to help students master key math vocabulary. Here are some ways you can use them in your classroom.
* Send the vocabulary flippers home with students to use as study aides or test preparation.
* Put the vocabulary flippers in a “Math Toolkit” folder that students can use for reference when completing assignments.
* Duplicate the front page, but leave off the page with the definition and have students write their own definition either as a guided activity where you provide the definition or as an independent project.
* Have students work in partnerships and quiz one another using the flippers.
* Send them home before a test for kids to study.
* Give them to struggling students to use for reference.
* Have some extras made for conference night and give them to parents who ask, “What can we do at home?”
* Allow lower level readers to use them as reference material while taking tests as a testing accommodation.
* Provide them to parents at a school wide “Math Night”.
* Have students use them like flash cards and quiz themselves. They are self checking and can be used when there are a few extra minutes of class time.
* Give them to students to study and then have a class vocabulary “bee” (like a spelling bee, but the students have to define the words instead of spelling them).
* Give the kids the a specific vocabulary flipper and challenge them to write a story or poem using as many of the vocabulary words as possible.
* Give the words to all students (or just select students) BEFORE doing the a math unit. Challenge them to learn the words.
* Have students create their own flippers with vocabulary from any subject. Blank templates are available on pages 99 - 100!!
<table>
<thead>
<tr>
<th>Operations and Algebraic Thinking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation</td>
</tr>
<tr>
<td>Expression</td>
</tr>
<tr>
<td>Operation</td>
</tr>
<tr>
<td>Number Pattern</td>
</tr>
<tr>
<td>Shape Pattern</td>
</tr>
<tr>
<td>Quantity</td>
</tr>
<tr>
<td>Reasonableness</td>
</tr>
</tbody>
</table>
A number sentence with an equal sign (it shows two quantities are equal).
Example \(9 \times a = 36\)

A part of a number sentence that has numbers and operations sign, but no equal sign.
Example \(4 + a\)

A mathematical calculation, the four basic operations are addition, subtraction, multiplication and division.

An ordered set of numbers, the order helps you predict what will come next.
Example \(2, 4, 6, 8, 10\)

An ordered set of shapes, the order helps you predict what will come next.

A specific amount or measure.

An answer that makes sense based on the problem that is being solved.
<table>
<thead>
<tr>
<th>Prime Number</th>
<th>Composite Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor Pair</td>
<td>Multiple</td>
</tr>
</tbody>
</table>
A whole number greater than 1 that can be divided by more than two factors. Example - 4 is a composite number, it can be divided by 1, 2, and 4

A number that has exactly two factors, 1 and itself. Example - 5 is a prime number, the only factor of 5 are 1 and 5

Two numbers that, when multiplied, equal a certain number. Example Factor Pairs of 16
1 x 16, 2 x 8, 4 x 4

The product of a number and any whole number. Example Multiples of 8
8, 16, 24, 32, 40, 48
<table>
<thead>
<tr>
<th>Remainder</th>
<th>Quotient</th>
<th>Array</th>
<th>Product</th>
<th>Multiplication</th>
</tr>
</thead>
</table>
A process of combining equal groups to find out how many are in all.

The answer to a multiplication problem.

An arrangement of objects in rows and columns.

4 x 3

The answer in a division problem.

The amount left over when a number can’t be divided equally.
<table>
<thead>
<tr>
<th>Place Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-digit</td>
</tr>
<tr>
<td>Number</td>
</tr>
<tr>
<td>Round</td>
</tr>
<tr>
<td>Estimate</td>
</tr>
<tr>
<td>Compare</td>
</tr>
</tbody>
</table>
The value of a digit in a number, based on the location of the digit.

A number greater than 9 that has more than 1 digit.

To find the nearest value of a number based on a given place value. Example 275 rounded to the nearest hundred = 300

An answer that is close to the exact answer.

To describe whether numbers are less than, greater than, or equal to one another.
<table>
<thead>
<tr>
<th>Standard Form</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expanded Form</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Written Form</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
A way to write numbers by using the digits 0 - 9 with each digit having a place value.

1, 783 in standard form

1,783

A way to write numbers by using the digits 0 - 9 with each digit having a place value

1, 783 in expanded form

1,000 + 700 + 80 + 3

A way to write numbers using words

1, 783 in word form

one thousand, seven hundred eighty three
A number that names part of a whole or part of a group.

The number above the bar in a fraction, it tells how many parts of a group. \[\frac{1}{3} \]

The number below the bar in a fraction, it tells the number of equal parts in all. \[\frac{1}{3} \]

A common multiple of 2 or more denominators.
\[\frac{1}{2} \text{ and } \frac{2}{3} \]

Common Denominator = 6

Two or more fractions that name the same amount.
\[\frac{1}{2} = \frac{2}{4} \]

Fractions that are used to help understand the relative size of other fractions.
Common Benchmark Fractions - 0, 1/4, 1/2, 3/4, and 1
Benchmark Fraction

Fold to create flaps
<table>
<thead>
<tr>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.01</td>
</tr>
<tr>
<td>0.05</td>
</tr>
<tr>
<td>0.25</td>
</tr>
<tr>
<td>0.75</td>
</tr>
<tr>
<td>1.5</td>
</tr>
</tbody>
</table>
A number with one or more numbers to the right of the decimal point (tenths, hundredths, etc.).

\[
\begin{array}{c|c}
1 & 10 \\
10 & 100 \\
\hline
5 & 50 \\
10 & 100 \\
\hline
1 & 100 \\
\hline
5 & 100 \\
\hline
25 & 100 \\
\hline
75 & 100 \\
\hline
1 & \frac{5}{10} \\
1 & \frac{50}{100}
\end{array}
\]
<table>
<thead>
<tr>
<th>Measurement Conversions</th>
</tr>
</thead>
<tbody>
<tr>
<td>kilometers (km) → meters (m)</td>
</tr>
<tr>
<td>meters (m) → centimeters (cm)</td>
</tr>
<tr>
<td>kilograms (kg) → grams (g)</td>
</tr>
<tr>
<td>liters (L) → milliliters (ML)</td>
</tr>
<tr>
<td>pounds (lb) → ounces (oz)</td>
</tr>
<tr>
<td>feet (ft) → inches (in)</td>
</tr>
<tr>
<td>yard (yd) → feet (ft)</td>
</tr>
<tr>
<td>hours (h) → minutes (min)</td>
</tr>
<tr>
<td>minutes (min) → seconds (s)</td>
</tr>
</tbody>
</table>
1 kilometer (km) = 1,000 meters (m)

1 meter (m) = 100 centimeters (cm)

1 kilogram (kg) = 1,000 grams (g)

1 liter (l) = 1,000 milliliters (ml)

1 pound (lb) = 16 ounces (oz)

1 foot (ft) = 12 inches (in)

1 yard (yd) = 3 feet (ft)

1 hour (h) = 60 minutes (min)

1 minutes (min) = 60 seconds (s)
<table>
<thead>
<tr>
<th>Area</th>
<th>Perimeter</th>
<th>Length</th>
<th>Width</th>
<th>Area Formula</th>
<th>Perimeter Formula</th>
</tr>
</thead>
</table>

The number of square units needed to cover a flat surface.

Area = 3 \times 4 = 12 \text{ square units}

The distance around a shape.

\begin{align*}
5 \text{ cm} \\
 \quad 3 \text{ cm}
\end{align*}

P = 5 + 5 + 3 + 3 = 16 \text{ cm}

The measurement of one side of a shape.

How wide a shape is, or the measure of a side.

Area = \text{length} \times \text{width}

Area = 5 \text{ units} \times 4 \text{ units} = 20 \text{ square units}

Perimeter = \text{length} + \text{length} + \text{width} + \text{width}

P = 4 + 4 + 3 + 3 = 14
<table>
<thead>
<tr>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
</tr>
<tr>
<td>Mass</td>
</tr>
<tr>
<td>Weight</td>
</tr>
<tr>
<td>Liquid Volume</td>
</tr>
<tr>
<td>Elapsed Time</td>
</tr>
</tbody>
</table>
The measurement of distance between two endpoints.

The amount of matter in an object.

A measurement that tells how heavy an object is.

The amount of space a liquid takes up.

The amount of time that passes between the start and end of an activity.
<table>
<thead>
<tr>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Angle</td>
</tr>
<tr>
<td>Right Angle</td>
</tr>
<tr>
<td>Obtuse Angle</td>
</tr>
<tr>
<td>Protractor</td>
</tr>
<tr>
<td>Right Triangle</td>
</tr>
</tbody>
</table>
A figure formed by two line segments or rays that share the same endpoint.

An angle that measures greater than 0˚ and less than 90˚.

An angle that measures exactly 90˚.

An angle that measures greater than 90˚ and less than 180˚.

A tool used to measure angles.

A triangle with exactly one right angle.
Line

Line Segment

Parallel Lines

Perpendicular Lines

Line of Symmetry

Ray
A straight path of points in a plane that continues without end in both directions with no endpoints.

A part of a line that includes two points called endpoints and all the points between the endpoints.

Two lines that are always the same distance apart from each other and never meet.

Lines that meet or cross each other to form a right angle.

An imaginary line on a shape about which the shape can be folded so that its two parts match exactly.

A line with one endpoint that goes on forever in one direction.
Flash Cards and Math Vocabulary Toolkit

Knowledge of math vocabulary is essential. Pages 84 - 98 are a terrific resource for helping students develop a deep understanding of math vocabulary. These pages can wither be used to create math flash cards or you can use them to create a math vocabulary “toolkit” or notebook.

Making Flash Cards
1. Print pages 84 - 98 single sided.

2. Fold the cards long wise along the middle line and glue the two sides together.

3. Cut the cards out so that the word is on the front and the definition is on the back.

4. The front of the card is the vocabulary words and the back is the definition. This is a great resource because it is “self checking” and takes very little time and effort to prepare!

Making the Math Vocabulary Toolkit (or notebook)
1. Print pages 84 - 98 double sided.

2. Use a 3 hole punch to punch holes in the paper.

3. Place papers in a 2 pocket folder with brass fasteners (place the paper in the center with the brass fasteners).

4. The pockets can be used to hold math homework, vocabulary flippers, or other math reference tools.

Bonus Item - Page 101 has Math Toolkit labels for the front of the folders!
<table>
<thead>
<tr>
<th>Acute Angle</th>
<th>An angle that measures greater than 0° and less than 90°.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle</td>
<td>A figure formed by two line segments or rays that share the same endpoint.</td>
</tr>
<tr>
<td>Area</td>
<td>The number of square units needed to cover a flat surface.</td>
</tr>
<tr>
<td>Array</td>
<td>An arrangement of objects in rows and columns.</td>
</tr>
<tr>
<td>Benchmark Fraction</td>
<td>Fractions that are used to help understand the relative size of other fractions. Common Benchmark fraction are 0, 1/4, 1/2, 3/4, and 1</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| **Common Denominators** | A common multiple of 2 or more denominators. \[
\begin{align*}
\frac{1}{2} & \quad \frac{2}{3} \\
\text{Common Denominator} &= 6
\end{align*}\] |
<p>| Compare | To describe whether numbers are less than, greater than, or equal to one another. |
| Composite Number | A whole number greater than 1 that can be divided by more than two factors. |</p>
<table>
<thead>
<tr>
<th>Data Set</th>
<th>A group of collected information.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>A number with one or more numbers to the right of the decimal point (tenths, hundredths, etc.).</td>
</tr>
</tbody>
</table>
| **Denominator** | The number below the bar in a fraction, it tells the number of equal parts in all.
\[
\frac{1}{4} \rightarrow \text{denominator}
\] |
<p>| Elapsed Time | The time that passes from the start of an activity to the end. |</p>
<table>
<thead>
<tr>
<th>Endpoint</th>
<th>A point at the end of a ray or line segment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation</td>
<td>A number sentence with an equal sign (it shows two quantities are equal). Example $9 \times a = 36$</td>
</tr>
<tr>
<td>Equivalent Decimal</td>
<td>Two or more decimals that name the same amount. Example $0.5 = 0.50$</td>
</tr>
<tr>
<td>Equivalent Fraction</td>
<td>Two or more fractions that name the same amount. Example $\frac{1}{2} = \frac{2}{4}$</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Estimate</td>
<td>An answer that is close to the exact answer.</td>
</tr>
<tr>
<td>Expression</td>
<td>A part of a number sentence that has numbers and operations sign, but no equal sign. Example $4 + a$</td>
</tr>
<tr>
<td>Factor Pairs</td>
<td>Two numbers that, when multiplied, equal a certain number.</td>
</tr>
<tr>
<td></td>
<td>Example Factor Pairs of 16 - 1×16, 2×8, 4×4</td>
</tr>
<tr>
<td>Formula</td>
<td>Two numbers that, when multiplied, equal a certain number.</td>
</tr>
<tr>
<td></td>
<td>Example Factor Pairs of 16 - 1×16, 2×8, 4×4</td>
</tr>
<tr>
<td>Fraction</td>
<td>A number that names part of a whole or part of a group.</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Length</td>
<td>The measurement of distance between two endpoints.</td>
</tr>
<tr>
<td>Line</td>
<td>A straight path of points in a plane that continues without end in both directions with no endpoints.</td>
</tr>
<tr>
<td>Line Segment</td>
<td>A part of a line that includes two points called endpoints and all the points between them.</td>
</tr>
<tr>
<td>Line Plot</td>
<td>A graph that uses marks (often Xs) above a number line to show data.</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| | \[\begin{array}{cccc}
| | x & x & & \\
| | x & x & x & \\
| | x & x & x & x \\
| | 1 & 2 & 3 & 4 \end{array} \] |
| **Line of Symmetry** | An imaginary line on a shape about which the shape can be folded so that its two parts match exactly. |
| **Mass** | The amount of matter in an object. |
| **Multi-Digit Number** | A number greater than 9 that has more than 1 digit. |
| **Multiple** | The product of a number and any whole number.
Example
Multiples of 8 - 8, 16, 24, 32, 40, 48 |
| **Multiplication** | A process of combining equal groups to find out how many are in all.
$4 \times 3 = 12$ |
| **Number Pattern** | An ordered set of numbers, the order helps you predict what will come next.
Example
2, 4, 6, 8, 10 |
| **Numerator** | The number above the bar in a fraction, it tells how many parts of a group.
$\frac{1}{4}$ |
<table>
<thead>
<tr>
<th>Obtuse Angle</th>
<th>An angle that measures greater than 90° and less than 180°.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>A mathematical calculation, the four basic operations are addition, subtraction, multiplication and division.</td>
</tr>
<tr>
<td>Parallel Lines</td>
<td>Two lines that are always the same distance apart from each other and never meet.</td>
</tr>
<tr>
<td>Perimeter</td>
<td>The distance around a shape.</td>
</tr>
<tr>
<td>Perpendicular Lines</td>
<td>Lines that meet or cross each other to form a right angle.</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Place Value</td>
<td>The value of a digit in a number, based on the location of the digit.</td>
</tr>
<tr>
<td>Point</td>
<td>An exact location.</td>
</tr>
<tr>
<td>Prime Number</td>
<td>A number that has exactly two factors, 1 and itself.</td>
</tr>
<tr>
<td>Product</td>
<td>The answer to a multiplication problem.</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Protractor</td>
<td>A tool used to measure angles.</td>
</tr>
<tr>
<td>Quantity</td>
<td>A specific amount or measure.</td>
</tr>
<tr>
<td>Quotient</td>
<td>The answer in a division problem.</td>
</tr>
<tr>
<td>Ray</td>
<td>A line with one endpoint that goes on forever in one direction.</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Reasonableness</td>
<td>An answer that makes sense based on the problem that is being solved.</td>
</tr>
<tr>
<td>Remainder</td>
<td>The amount left over when a number can’t be divided equally.</td>
</tr>
<tr>
<td>Right Angle</td>
<td>An angle that measures exactly 90°.</td>
</tr>
<tr>
<td>Right Triangle</td>
<td>A triangle with one right angle.</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Reasonableness</td>
<td>An answer that makes sense based on the problem that is being solved.</td>
</tr>
<tr>
<td>Round</td>
<td>To find the nearest value of a number based on a given place value.</td>
</tr>
<tr>
<td>Shape Pattern</td>
<td>An ordered set of shapes, the order helps you predict what will come next.</td>
</tr>
<tr>
<td>Two-Dimensional Figures</td>
<td>A figure with length and width; a figure on a plane or flat surface.</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Volume</td>
<td>The amount of space inside a 3 dimensional object.</td>
</tr>
<tr>
<td>Width</td>
<td>The measure of distance from side to side in a shape. How wide something is.</td>
</tr>
</tbody>
</table>
About the Author

I have been teaching since 1998 and my passion is developing high quality classroom materials. I love planning units and developing items for my classroom. This vocabulary system had a huge impact on my classroom when I started using it. My struggling readers immediately started to improve on math tests and I realized they were unable to read the vocabulary in the directions and in problems. It also had a huge impact on other students’ achievement as well.

The word wall is a huge help because I require students to check the word wall for definitions before they ask what a word means. This helps my students commit the words to memory. I send the flippers and toolkits home before tests or when I introduce new units and it is very helpful for parents and families to have this resource. In addition, I use flippers as a review before our state test. The results are incredible!!

If you like this product check out my store at - .

http://www.teachersnotebook.com/shop/MathMojo

I have many math products including multiple cooperative learning cards and math games!

* This publication was created and is copyrighted by Alexis Sergi. All rights reserved. This product is bound by copyright laws. Redistributing, editing, selling, or posting this items (or any part thereof) is strictly prohibited. This also includes distributing this product on the Internet which is strictly prohibited without first gaining permission from the author. Violations are subject to the penalties of the Digital Millennium Copyright Act. Please contact the author if you wish to be granted permission.